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2 	 Chapter T4A      The Boltzmann Factor

	 The average energy of a quantum system (qs) is interesting for a variety 
of reasons, but one of the most important is the following. Consider a mac-
roscopic object at temperature T that is comprised of Nqs identical quantum 
systems. If Nqs is very large, we can imagine each quantum system to be in 
contact with a reservoir consisting of the remaining systems. Under these 
circumstances, the object’s total thermal energy U is very nearly

	 U N Eqs avg= � (T4A.26)

Therefore, knowing a quantum system’s average energy at a given tempera-
ture T means that we can calculate the total thermal energy U of an object 
made up of such quantum systems without having to know anything about 
the system’s multiplicity X. Since it is difficult to determine X for most sys-
tems other than an Einstein solid, this can be very useful.

Problem:    Suppose that a certain kind of molecule in a solution at room 
temperature can be in one of either of two quantum states, which have ener-
gies E0 = 0 and  E1 = f respectively, where f = 0.020 eV. What is the average 
energy of such a molecule? If the solution contains 1022 such molecules, what 
is the total thermal energy U stored by the excited molecules?

Solution    The quantum system in this case is an individual molecule; the 
reservoir is the rest of the solution. Since each molecule is a quantum system, 
the number of molecules N is the same as the number of quantum systems 
Nqs. In this case, we can write out the sums in equation T4.25 explicitly:
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where in the last step I multiplied top and bottom by e /k TBf . At room temper-
ature kBT ≈ 0.0254 eV, so f/kBT = (0.020 eV)/ (0.0254 eV) = 0.79 here. Therefore

	 . . eVE
e 1
1 0 313 0 00625.0 79avg f f=
+

= =c m � (T4A.28)

The total thermal energy U associated with N such molecules is
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	 Let’s check equation T4A.28 by using equation T4.8 to calculate the 
states’ probabilities directly and then using equation T4A.23 to find the aver-
age energy. The probability that the molecule is in the excited state is
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which is the same as the quantity in parentheses in equation T4A.27. So we 
see in this case that the atom has a probability of 0.313 of being in the excited 
state and thus a probability of 0.687 of being in the ground state. The average 
energy is thus 0·0.687 + f(0.313) = 0.313f.

Why the average energy is 
interesting

Example T4A.3

This replaces the ending of chapter T4 starting
at the top of page 60 in the published book.
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T4A.4	 Application to the Einstein Solid
The method outlined in the last section provides a powerful tool for con-
necting models of microscopic quantum systems to the observable thermal 
behavior of macroscopic systems. In this section, I will illustrate this by con-
sidering again the Einstein solid.
	 As we saw in chapter T2, an Einstein solid is essentially a collection of 3N 
independent quantum oscillators. Let’s take a single quantum oscillator as 
our microscopic system, and consider the other 3N – 1 oscillators in the solid 
as a reservoir at temperature T (as long as N >> 1, this should be an excellent 
approximation). The partition function for a single oscillator is

	 Z e e e ee 1/ / / // E k T E k T k T k TE k T 2B B B BB 1 20 f f= + + + = + + +f f- - - --

            x x1 2 f= + + +    where   x e /k TB/ f- 	 (T4A.31)

Note that x < 1 in this expression. A well-known mathematical identity tells 
us that when x < 1, this infinite power series has a closed-form equivalent:

	 x x x1 1
12 f+ + + =
-

	 (T4A.32)

Also note that we can write the sum in the numerator of equation T4.25 as

	 ( ) ( )n e x x x0 2 3/n k T 2 3B ff f= + + + +f-/ 	 (T4A.33)

The sum in parentheses also has a simple value for x < 1 (as you can check by 
looking online or using WolframAlpha): 
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Therefore, equation T4.25 implies that the average energy in a quantum os-
cillator in an Einstein solid is
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This means that the total thermal energy in an Einstein solid with N atoms 
(3N oscillators) must be
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at any absolute temperature T. This is much better than we could do in chap-
ter T3, where we could only get a high-temperature limit.
	 Now, we define an object’s heat capacity C to be dU/dT, the ratio of the 
amount of heat (or other external energy) dU that we put into the object to the 
differential temperature change dT that results. (The capital C distinguishes 
heat capacity from specific heat c, which is the heat capacity per unit mass.) C 
is easier to measure experimentally than an object’s total thermal energy U. 
With a bit of work, we can show that an Einstein solid’s heat capacity is
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Exercise T4AX.2
Fill in the missing steps in equation T4A.37. (This is just basic calculus.)
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The quantity kBT/f is a unitless quantity proportional to the temperature. We 
can think of it as being a ratio /T TE  where

	 T kBE /
f  = the solid’s Einstein temperature	 (T4A.38)

is a reference temperature that depends on the spacing f between our par-
ticular solid’s oscillator energy levels: it is the temperature where kBTE = f. 
This provides a physical temperature scale for the solid.
	 Now equation T4A.37 (repeated below using T/TE for easy reference)
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 is a pretty complicated function, but fortunately, one can find computer tools 
(for example, http://www.wolframalpha.com) makes plotting even compli-
cated functions pretty straightforward. The solid line in figure T4A.4 shows 
graphs of this function against experimental data for iron and gold. Note that 
at high temperatures, equation T4A.39 does imply that C = dU/dT ≈ 3NkB, just 
as we found in chapter T3. The Einstein model does a decent job of modeling 
the basic shape of the data, but deviates at both high and low temperatures. 
This is mostly because at high temperatures, free electrons can store some 
energy and the atomic oscillators are not perfect harmonic oscillators, and 
at low temperatures because the assumption that the atoms oscillate inde-
pendently of each other becomes a poor approximation. Peter Debye in 1912 
developed a more complicated model (beyond our scope here) that better 
describes the low-temperature behavior of solids.
	 However, the Einstein model does pretty well for a simple model. In par-
ticular, it describes two crucial features of the experimental data. The first is 
that a solid’s heat capacity (approximately)  levels off at about kB per oscilla-
tor (3kB per atom) at sufficiently high temperatures. This explains why (noted 
in chapter T1) the heat capacities of all monatomic solids are pretty close to 
3NkB at room temperature.
	 Even more importantly, it predicts (at least qualitatively) the observed 
sharp decrease in a solid’s heat capacity as temperature decreases. We can 
understand this as follows. At T >> TE, meaning that kBT >> f, the formula 
tells us that an oscillator’s average energy approaches kBT. We can consider 
this the “classical” behavior of the system, that is, its behavior when there 
is so much energy in each oscillator that the fact that its energy is quantized 
instead of continuously variable is not significant.
	 But as the solid’s temperature T approaches TE (meaning that kBT ap-
proaches f), an average oscillator contains just one unit of energy. Now the 
fact that an oscillator’s energy levels are quantized has more effect. Note that 
an oscillator must have at least one unit of energy to have any energy at all. 
As the temperature continues to fall below TE, the probability that an oscilla-
tor has even one unit of energy becomes small, and the number of oscillators 
having exactly zero energy begins to weigh disproportionately in the average 
energy per oscillator, drawing it down below kBT and the heat capacity per 
oscillator below kB. The Boltzmann factor in fact implies that the probability 
that an oscillator contains even one unit of energy becomes exponentially 
suppressed as T becomes much smaller than TE  (kBT << f), so the ability of 
the solid to store any heat at all also becomes exponentially suppressed. We 
say that at temperatures T << TE, the oscillators are “frozen out” of the nor-
mal process of storing energy.
	 A graph of the heat capacity actually provides a means of estimating the 
effective spring constant of the forces holding an atom in position in a crys-
tal. As discussed in unit Q, the difference f between a quantum oscillator’s 
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energy levels is related to the angular frequency ~ at which the oscillator 
would oscillate classically: &f ~= . As we saw in unit N, ~ in a classical oscil-
lator is related to the mass of the oscillating object and the spring constant ks 
of the spring-like forces that try to hold the object at its equilibrium position: 

( / )k m /
s

1 2~ = . We can estimate TE = kB/f by looking at the curve of a solid’s 
heat capacity and so compute ks from that, as the example below illustrates.

Problem: What is the effective value of the spring constant ks for iron atoms?

Solution  The solid curve in figure T4A.4 was drawn assuming TE = 310 K 
for iron, but let’s estimate TE assuming we don’t know this. The heat capac-
ity per oscillator for iron is about 0.47kB at T = 100 K. From the graph, this is 
about 0.32TE, so TE is about (100 K)/0.32 = 310 K, as claimed. Now note that
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So to find ks, we need the mass of an iron atom. Iron’s atomic weight MA is 
about 56 g, meaning that Avogadro’s number NA = 6.02 #  1023 iron atoms 
have this mass. So m = MA/NA, and
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Note that the units work out: ks expresses the force that a spring exerts when 
stretched or compressed a certain distance. A macroscopic spring with this ks 
would exert 1.5 N of force (≈ 0.35 lb) when stretched or compressed by 1 cm.

Example T4A.3
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Figure T4A.4
The vertical axis shows heat capacity (in units of kB per oscillator), while the solid line shows the prediction of the Einstein 
model. The diamonds show actual measured results. The data for iron is from Desai, J. Chem. Ref. Data, 15, 3, 1986), and 
that for gold is from the CRC Handbook (64th edition, 1983, page D-94). Note that while TE is different for iron and gold, 
the basic shape of the graph of experimental heat capacities as a function of T/TE is nearly the same for both.
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The Ideal Gas T5A
Chapter Overview
Introduction
In this chapter, we deploy the techniques developed in the last chapter to explore 
thermal behavior of gases.

Section T5A.1:  Quantum Particles in a One-Dimensional Box
A gas consists of particles bouncing around a mostly empty container. The first step 
toward modeling this is to consider a particle moving in one dimension between two 
barriers a distance L apart. Quantum mechanics tells us that the quantized kinetic 
energy levels for such a particle are given by /E h n mL8n

2 2 2= , where m is the mol-
ecule’s mass, h is Planck’s constant, and n is an integer. In the high-temperature limit, 
we can evaluate the sums in equation T4.25 by approximating them as integrals. The 
result is that we find that the particle’s average energy when it is in equilibrium with 
a reservoir at temperature T is E k TB2

1
avg = . If then we imagine N weakly interacting 

particles in the same one-dimensional box, then we can consider each particle to be 
a quantum system in equilibrium with a reservoir consisting of the other N – 1 par-
ticles. The total internal energy of this one-dimensional gas is then

	 U NE k TN B2
1

avg= = 	 (T5A.6)

Section T5A.2:  A Three-Dimensional Monatomic Gas
We can make the model more realistic by extending it to three dimensions. Because 
each particle in a three-dimensional box behaves like independent particles in three 
one-dimensional boxes (one for each axis direction), we can treat each axis direction 
for each particle as a quantum system in equilibrium with the reservoir consisting of 
the other particle axis directions. If we have N particles, we have 3N such systems, so 
the gas’s total internal energy and heat capacity at temperature T must be

	 U NE Nk T dT
dU Nk3 2

3
2
3andB Bavg= = = 	 (T5A.8)

This is very close to what we observe for monatomic gases (see Table T1.2). We call the 
model we are using of weakly-interacting particles an ideal gas model.

Section T5A3: Diatomic Gases
Gases with multi-atom molecules can store energy in modes in addition to their kinetic 
energy (the kinetic energy per particle is k TE , BKE 2

3
avg =  for all gases, as found above). 

In particular, diatomic molecules can store energy in the form of rotational energy. 
The energy levels for this mode are ( )E j j 1j f= +  (where f / / Ih 82 2r , h is Planck’s 
constant, and I is the molecule’s moment of inertia), and there are 2j + 1 quantum 
states per energy level. In the high-temperature limit, we can again approximate the 
sums in equation T4.25 by integrals. Evaluating the integrals yields E k TBrot,avg = . This 
means that the total internal energy and heat capacity of a diatomic gas is

	 ( ) ,U E Nk T Nk T dT
dU NkN E Nk T, B B BKE B2

3
2
5

2
5

avg rot,avg= = =+ + = 	 (T5A.14)
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This is again close to what we observe experimentally (see Table T1.2).	
	 Single atoms are not solid entities that can rotate, so this energy storage mode is 
not available to atoms in monatomic gases.

(The remaining sections are in the published textbook.)

Section T5.4: The Equipartition Theorem and Its Limits
Note that the average energy per atom in a Einstein solid, the average kinetic energy 
of a gas molecule, and the average rotational energy of a diatomic molecule are all 
integer multiples of k TB2

1 . The equipartition theorem provides a non-quantum ap-
proach to understanding this result.
	 The equipartition theorem states that if the newtonian expression for the energy 
of a molecule contains a term that depends on the square of some classical variable q 
(such as x-position , x-momentum px, or the x component Lx of angular momentum), 
then the average energy associated with that term is k TB2

1 . The corresponding vari-
able q is called a degree of freedom. The section illustrates how the theorem yields 
the high-temperature results we have derived earlier. In particular, both the equipar-
tition theorem and our earlier quantum calculations agree that

	 ,U f Nk T dT
dU f

Nk2 2B B. . 	 (T5.21)

•	 Purpose:  These equations specify the thermal energy U and the heat capacity 
dU/dT of simple gases containing N particles at temperature T, where f is the 
gas molecule’s “degrees of freedom” (f = 3 for monatomic gases, f = 5 for simple 
diatomic gases) and kB is Boltzmann’s constant.

•	 Limitations: These expressions are approximations valid at sufficiently high 
temperatures. They also assume that vibrational modes of molecular energy 
storage either do not exist or are not significant.

	 However, only the quantum results yield the correct low-temperature behavior. 
When the temperature falls so low that even the first excited energy level in an energy 
storage mode is pretty improbable, then that mode has difficulty storing any energy 
at all and the heat capacity associated with that level goes to zero compared to its 
high-temperature limit. We say that the mode in such a case is “frozen out.”

Section T5.5: The Ideal Gas Law
At normal temperatures, a newtonian model adequately expresses the movement of 
gas atoms. Such a model implies that gas molecules moving with an average kinetic 
energy of k TB2

3  bouncing off of the gas container’s walls will exert a pressure (force 
per unit area) on those walls such that

	 PV Nk TB= � (T5.28)

•	 Purpose:  This equation gives the pressure P of N molecules of a low-density 
gas held in a volume V at temperature T, where kB is Boltzmann’s constant.

•	 Limitations:  This equation strictly applies only in the zero-density limit (al-
though it is a good approximation for real gases at typical densities). All parts 
of a gas sample must be in equilibrium for it to have well-defined single values 
of P and T throughout the volume.

•	 Notes:  This is the ideal gas law: any gas obeying this law is an ideal gas.

Each species in a mixture of gases exerts a partial pressure Ps = NskBT/V, and the total 
pressure is the sum of partial pressures. Also the chemist’s ideal gas law is PV = nRT, 
where n is the number of moles and R = NAkB = 8.31 J/K is the gas constant.
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T5A.1	 Quantum Particles in a One-Dimensional Box
Gases are extremely important systems in thermal physics. We started our 
exploration of thermal physics with the Einstein solid because one can quite 
easily determine a macrostate’s multiplicity for this particular kind of object. 
We cannot so easily do this for gases. However, the techniques developed in 
the last chapter will enable us to do a clever end-run around this problem.
	 What is the difference between a gas and a solid? Molecules in a solid are 
bound together in such a way that a given molecule vibrates around a fixed 
position in a lattice. The distance between atoms is also basically the same as 
the size of a molecule. But gas molecules are not bound to each other: instead, 
they may freely roam around whatever container holds the gas. The average 
separation of gas molecules is typically much larger than the molecule’s di-
ameter, meaning that a gas consists mostly of empty space. This means that a 
gas’s volume is not essentially fixed (as a solid’s volume is): indeed, specify-
ing a gas’s volume V is an important part of specifying its macrostate.
	 Let’s begin with the simplest possible quantum model of such a situa-
tion. Suppose that we have N gas particles that are moving completely freely 
back and forth in a one-dimensional container between two impenetrable bar-
riers a distance L apart. Also assume that the particles simply pass through 
each other without interacting as they move back and forth, so that each 
particle behaves as if it were alone in the container, interacting only with the 
barriers. We call a gas of non-interacting particles an ideal gas.
	 If our gas particle is a completely structureless mathematical point, the 
only energy it can have is kinetic energy. Assuming that the particle is non-
relativistic and has mass m, we learned in unit Q that its energy is

	 E
mL
h n
8n 2

2 2
= 	 (T5A.1)

where n is an integer. (The energy is quantized because we must fit an in-
teger number of half-wavelengths of the particle’s quantum wavefunction 
between the impenetrable: see unit Q for the details.)
	 Now we can use the equation T4.25 to calculate the average energy this 
gas particle will have if it is in equilibrium with a reservoir at temperature T. 
That equation tells us that this particle’s average energy will be
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The infinite sums look difficult to do, but, we can approximate them pretty 
easily in the high-temperature limit. Suppose we draw a graph where we 
represent the values of e /n k TB2f-  at a given temperature T but different values 
of n as a sequence of bars of width ∆n = 1 (see figure T5A.1). If f << kBT, so 
that the exponential decays very slowly as n increases, then the value of the 
bottom sum is approximately equal to the value of the area under the curve 
of the exponential function from 0 to infinity. Therefore, we can approximate 
the sum as an integral:

	 e n e dn/ /n k T n k T

n 01

B B
2 2
T .

3
3

f f- -

=

/ #     if  f << kBT	 (T5A.3a)

This is actually a superb approximation at room temperature. You can show 
that for a helium atom (m ≈ 6.7 # 10–27 kg) trapped between barriers only a 
micron apart (L = 10–6 m), then f/kBT ≈ 2 # 10–9 at room temperature. This 
means that n2 must be ~108 (n ~ 104) for e /n k TB2f-  to fall significantly below 1 
even in this extreme case. The exponential therefore decreases very slowly 
with increasing n (indeed, the actual curve is much flatter than in the figure).

What is a gas?

An idealized one-dimensional 
gas model

Approximating the partition 
function using an integral



T5A.2  A Three-Dimensional Monatomic Gas 9

Exercise T5AX.1
Verify that f/kBT ≈ 2 # 10–9 for helium in a micron-sized container at room 
temperature. Also argue that f/kBT will be even smaller if m and/or L are 
larger (note that helium is the lightest possible monatomic gas).

	 Similarly, we can approximate the sum in the numerator by

	 n e n n e dn/ /n k T n k T
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2 2
01

B B
2 2
T .f f
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3
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=

/ #     if  f << kBT	 (T5A.3b)

Note that in both integrals, we are treating n not as an integer but as a con-
tinuous variable. We can put it into a more evocative form if we rename n to 
u (a variable without integer connotations) and define /a k TB2 / f : then
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The two integrals are easy to find online (or to calculate using WolframAlpha): 
the results are:
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( / )E
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2
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2
B B
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avg .
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= 	 (T5A.5)

	 Now consider a gas consisting of N weakly interacting identical particles 
in the same one-dimensional box. We can consider each particle to be a quan-
tum system in contact with a reservoir consisting of all of the other particles. 
The particles must interact at least weakly so that each particle can exchange 
energy with the reservoir represented by the others, but if the interactions are 
sufficiently weak, we can still reasonably model each particle quantum me-
chanically as if it were alone in the box. In this circumstance, the total thermal 
energy of the gas will simply be N times the average energy of each particle:

	 U NE N k T Nk T2 2
1B

Bavg= = =c m 	 (T5A.6)

We have therefore successfully determined the gas’s total thermal energy 
without having to calculate the gas’s multiplicity or entropy!

T5A.2	 A Three-Dimensional Monatomic Gas
The next step is to make our model more realistic by allowing our particles 
move in three dimensions. Suppose that we have structureless gas particles 
moving in a three-dimensional cubic container whose sides have length L. 

The average energy of a par-
ticle in a one-dimensional gas

Generalizing to three 
dimensions

e /n k TB2f-

n
5 10 15 20 25 30

Figure T5A.1
The area under the curve of the 
function e /n k TB2f-  is approximately 
equal to the area of the bars, 
which is equivalent to the sum 
in the partition function. Note 
that if f were even smaller, the 
curve would become flatter, and 
the approximation improves (the 
neglected areas between the bars 
and curve become even smaller).
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Quantum mechanics implies that we can treat each coordinate axis indepen-
dently: we must fit an integer number of half-wavelengths of a given par-
ticle’s quantum wavefunction along each coordinate axis, but those integer 
numbers (call them nx, ny, and nz) are arbitrary are not correlated. The total 
energy of each particle is just the sum of the energies we would get if we 
treated each dimension as a particle in a one-dimensional box:

	
( )

E
mL

h n n n
n n n

8D
x y z

x y z3 2

2 2 2 2
2 2 2f f f=

+ +
= + + 	 (T5A.7)

This means that we can model each dimension of each particle’s motion as an 
independent quantum system in contact with the reservoir. When we have 
N particles, we have 3N systems, and since they are identical, they have the 
same average energy E k TB2

1
avg = . So the total internal energy of an N-parti-

cle ideal gas whose particles move in three dimensions must be simply

	 U NE N k T Nk T3 2
3

2
3

B Bavg= = =c m 	 (T5A.8a)

The heat capacity of such a gas will therefore be

	 dT
dU Nk2

3
B= 	 (T5A.8b)

This is exactly what we observe experimentally for monatomic gases (such as 
helium, argon, krypton, and so on): see Table T1.2. The reason that this still-
simplistic model works well for these noble gases is that their atoms really do 
interact only weakly, so that model assumption is sound. For reasons that we 
will discuss in the next section, such atoms have no other accessible ways of 
storing energy, so the atoms of a noble gas really do behave pretty much as if 
they were non-interacting structureless particles!

T5A.3	 Diatomic Gases
The difference between monatomic gases and other gases is that multi-atom 
molecules can store energy in modes other than their kinetic energy. Because 
these modes are almost always independent of the molecules’ center-of-mass 
kinetic energy, the results of the previous section ensure that a molecule’s 
average kinetic energy is K k TB2

3
avg =  for all gases. But for multi-atom mol-

ecules, this is no longer the entire energy.
	 Multi-atomic gas molecules, for example, can store internal energy in the 
form of rotational energy.  Quantum mechanics tells us that if a molecule has 
a moment of inertia I, its rotational energy levels are

	 ( )E j j 1j f= +   where  j = 0, 1, 2, … and   
I

h
8 2

2
f

r
= 	 (T5A.9)

There are also 2j+1 distinct quantum states corresponding to each energy lev-
el Ej, corresponding to different orientations of the rotation without changing 
its energy. (The derivation of these results is a topic for an upper-level quan-
tum physics class, so we’ll simply accept them here as given.) So the average 
energy associated with these rotational quantum states is
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/ 	 (T5A.10)

	 To evaluate this sum, we apply the same trick that we did in section 
T5A.1: as long as f >> kBT, then we can approximate each sum by an integral:

We can treat each dimension of a 
particle’s motion as an inde-
pendent particle in a 1D box

The heat capacity of an ideal 
monatomic gas

The kinetic energy of any kind 
of gas molecule is still k TB2

3

Rotational energy states in 
quantum mechanics
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where ∆j = 1 in each sum, but j in each integral is no longer an integer but a 
continuous variable. Even for diatomic molecules with fairly small moments 
of inertia I, the value of f/kB turns out to be a few kelvins, so at room temper-
ature, f/kBT ≈ 100. Therefore, the exponential still varies pretty slowly and 
the integral is a good approximation to the sum (though not as good as it was 
in section T5A.1). Most diatomic gases (except for hydrogen) become liquids 
before the temperature would be low enough so that this is much of an issue.
	 These integrals look much harder than those considered in section T5A.1, 
but they are actually easier. Define ( )/u j j k T1 Bf= +  and note that du =  
( ) /j dj k T2 1 Bf + , which means that ( ) /j dj k T du2 1 B f+ = ^ h  and j j 1f + =^ h  
k TuB . Substituting these values into equation T5A.11a yields
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and doing the same for the integral in equation T5A.11b yields:
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0

2

0
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Bf

f f
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(where I did look up the last integral, though one can also use integration by 
parts). The average energy stored by a rotating molecule therefore

	 /
( ) /E k T
k T k T,rot avg
B

B
B

2

f
f

= = 	 (T5A.13)

The total internal energy of N molecules moving in three dimensions and 
rotating is therefore

	 ( )U NE N E E N k T k T k T2
3

2
5

B B Bavg KE,avg rot,avg= = + = + =c m 	 (T5A.14a)

and the heat capacity of such a gas is

	 dT
dU Nk2

5
B= 	 (T5A.14b)

Again, this is pretty close to what we observe for diatomic gas molecules, as 
noted in table T1.2. The main complication is that gas molecules, especially 
those involving more bonds than the simplest diatomic molecules, can also 
store energy in the form of various kinds of flexing vibrations. Therefore the 
heat capacities of all but the simplest diatomic molecules tend to be some-
what higher than Nk TB2

5 .
	 Note that a single atom cannot store rotational energy in this way. A sin-
gle atom is simply an electron cloud surrounding a tiny nucleus, and the 
electron cloud is not a solid thing that can rotate as a unit like a ball can. We 
can increase the angular momenta of the cloud’s individual electrons, but 
this involves moving the electrons to energy levels so high that they are sim-
ply not accessible at normal temperatures.

(Now read the remaining sections of chapter T5 in the published text.)

Evaluating the integrals

The internal energy and heat 
capacity of a gas whose mol-
ecules can rotate

Why single atoms cannot store 
rotational energy


