

Climate Change in the Introductory Course

Chapter T10 in Six Ideas 3/e!

Thomas A. Moore, Pomona College (tmoore@pomona.edu)

3 x the energy

Temperature increases by 3¹/₄

Earth

1. Pre-Industrial Model (for 280 ppm CO₂)

So,
$$T = (255 \text{ K})(x + 1)^{1/4}$$

Let's *assume* this applies for non-integer *x*, but note that the true formula *should* match when *x* is an integer.

$$T = 14.0$$
°C = 287.0 K before 1900
 $\Rightarrow x = 0.605$ at 280 ppm CO₂

2. Linear Increase Model

at 400 ppm CO₂,
$$x = (400/280)0.605 = 0.864$$

 $\Rightarrow T = (255 \text{ K})(1 + 0.864)^{1/4} = 298 \text{ K} = 25^{\circ}\text{C}$
 $\Rightarrow T \text{ increases by } 11^{\circ}\text{C}$ (!)

This is inconsistent with the the actual measured (and not really disputed) rise of ~ 0.8°C.¹

3. Square Root Increase Model²

at 400 ppm CO₂,
$$x = (400/280)^{1/2} \cdot 0.605 = 0.723$$

 $\Rightarrow T = (255 \text{ K})(1 + 0.723)^{1/4} = 292 \text{ K} = 19^{\circ}\text{C}$
 $\Rightarrow T \text{ increases by 5°C}$ (!)

This is inconsistent with the the actual measured (and not really disputed) rise of ~ 0.8°C.¹

4. Adjust for CO₂ fraction

Pre-industrial CO_2 actually only contributes 27% of opacity (H₂O most of the rest).³ Now, 0.27(0.605) = 0.163, so this is the effective thickness of the pre-industrial CO_2 layer and 0.442 is the thickness of the the other stuff \approx constant.

$$x = (400/280)^{1/2}(0.163) + 0.442 = 0.637$$

$$\Rightarrow T = (255 \text{ K})(x+1)^{1/4} = 288.4 \text{ K} = 15.4^{\circ}\text{C}$$

⇒ ~ 1.4°C temperature increase

5. Add Ocean Delay

- Model assumes equilibrium
- * But Earth is currently *not* in equilibrium
- * The ocean's large heat capacity delays equilibrium
- * Simple model: effective delay is 30 years⁴

Atmospheric CO₂ at Mauna Loa Observatory

Calculating the temperature rise for 345 ppm:

$$x = (345/280)^{1/2}(0.163) + 0.442 = 0.623$$

$$\Rightarrow T = (255 \text{ K})(x+1)^{1/4} = 287.8 \text{ K} = 14.8^{\circ}\text{C}$$

⇒ ~ 0.8°C temperature increase

This is basically spot on.

Endnotes

- 1. http://www.ncdc.noaa.gov/sotc/global/2015/11/
 supplemental/page-2
- 2. For more information about why the square root, go to http://scienceofdoom.com/roadmap/co2/

read CO_2 parts 3 and 4, and note that I am assuming that the "strong condition" applies (as claimed in the article) and that the "optical depth" is proportional to x (the number of layers).

- 3. Part 5 of the above discusses the 27% figure. (In general, scienceofdoom.com (in spite of the silly name) is a useful website for exploring the science of climate modeling at a significantly more sophisticated level than I am assuming here.)
- 4. I got this figure from a talk by climate scientist James Hansen. See also http://arxiv.org/abs/1307.6821 and http://meteora.ucsd.edu/cap/pdffiles/Hansen-04-29-05.pdf

Chapter T10 in

Six Ideas That Shaped Physics, 3rd edition (McGraw-Hill, available February 2016)

http://www.physics.pomona.edu/sixideas/

(I have posted this talk there)